21 research outputs found

    Multi-stream CNN based Video Semantic Segmentation for Automated Driving

    Full text link
    Majority of semantic segmentation algorithms operate on a single frame even in the case of videos. In this work, the goal is to exploit temporal information within the algorithm model for leveraging motion cues and temporal consistency. We propose two simple high-level architectures based on Recurrent FCN (RFCN) and Multi-Stream FCN (MSFCN) networks. In case of RFCN, a recurrent network namely LSTM is inserted between the encoder and decoder. MSFCN combines the encoders of different frames into a fused encoder via 1x1 channel-wise convolution. We use a ResNet50 network as the baseline encoder and construct three networks namely MSFCN of order 2 & 3 and RFCN of order 2. MSFCN-3 produces the best results with an accuracy improvement of 9% and 15% for Highway and New York-like city scenarios in the SYNTHIA-CVPR'16 dataset using mean IoU metric. MSFCN-3 also produced 11% and 6% for SegTrack V2 and DAVIS datasets over the baseline FCN network. We also designed an efficient version of MSFCN-2 and RFCN-2 using weight sharing among the two encoders. The efficient MSFCN-2 provided an improvement of 11% and 5% for KITTI and SYNTHIA with negligible increase in computational complexity compared to the baseline version.Comment: Accepted for Oral Presentation at VISAPP 201

    Self-Supervised Online Camera Calibration for Automated Driving and Parking Applications

    Full text link
    Camera-based perception systems play a central role in modern autonomous vehicles. These camera based perception algorithms require an accurate calibration to map the real world distances to image pixels. In practice, calibration is a laborious procedure requiring specialised data collection and careful tuning. This process must be repeated whenever the parameters of the camera change, which can be a frequent occurrence in autonomous vehicles. Hence there is a need to calibrate at regular intervals to ensure the camera is accurate. Proposed is a deep learning framework to learn intrinsic and extrinsic calibration of the camera in real time. The framework is self-supervised and doesn't require any labelling or supervision to learn the calibration parameters. The framework learns calibration without the need for any physical targets or to drive the car on special planar surfaces

    Fast and Efficient Scene Categorization for Autonomous Driving using VAEs

    Full text link
    Scene categorization is a useful precursor task that provides prior knowledge for many advanced computer vision tasks with a broad range of applications in content-based image indexing and retrieval systems. Despite the success of data driven approaches in the field of computer vision such as object detection, semantic segmentation, etc., their application in learning high-level features for scene recognition has not achieved the same level of success. We propose to generate a fast and efficient intermediate interpretable generalized global descriptor that captures coarse features from the image and use a classification head to map the descriptors to 3 scene categories: Rural, Urban and Suburban. We train a Variational Autoencoder in an unsupervised manner and map images to a constrained multi-dimensional latent space and use the latent vectors as compact embeddings that serve as global descriptors for images. The experimental results evidence that the VAE latent vectors capture coarse information from the image, supporting their usage as global descriptors. The proposed global descriptor is very compact with an embedding length of 128, significantly faster to compute, and is robust to seasonal and illuminational changes, while capturing sufficient scene information required for scene categorization.Comment: Published in the 24th Irish Machine Vision and Image Processing Conference (IMVIP 2022

    Towards a performance analysis on pre-trained Visual Question Answering models for autonomous driving

    Full text link
    This short paper presents a preliminary analysis of three popular Visual Question Answering (VQA) models, namely ViLBERT, ViLT, and LXMERT, in the context of answering questions relating to driving scenarios. The performance of these models is evaluated by comparing the similarity of responses to reference answers provided by computer vision experts. Model selection is predicated on the analysis of transformer utilization in multimodal architectures. The results indicate that models incorporating cross-modal attention and late fusion techniques exhibit promising potential for generating improved answers within a driving perspective. This initial analysis serves as a launchpad for a forthcoming comprehensive comparative study involving nine VQA models and sets the scene for further investigations into the effectiveness of VQA model queries in self-driving scenarios. Supplementary material is available at https://github.com/KaavyaRekanar/Towards-a-performance-analysis-on-pre-trained-VQA-models-for-autonomous-driving

    Near Field iToF LIDAR Depth Improvement from Limited Number of Shots

    Full text link
    Indirect Time of Flight LiDARs can indirectly calculate the scene's depth from the phase shift angle between transmitted and received laser signals with amplitudes modulated at a predefined frequency. Unfortunately, this method generates ambiguity in calculated depth when the phase shift angle value exceeds 2π2\pi. Current state-of-the-art methods use raw samples generated using two distinct modulation frequencies to overcome this ambiguity problem. However, this comes at the cost of increasing laser components' stress and raising their temperature, which reduces their lifetime and increases power consumption. In our work, we study two different methods to recover the entire depth range of the LiDAR using fewer raw data sample shots from a single modulation frequency with the support of sensor's gray scale output to reduce the laser components' stress and power consumption

    Revisiting Modality Imbalance In Multimodal Pedestrian Detection

    Full text link
    Multimodal learning, particularly for pedestrian detection, has recently received emphasis due to its capability to function equally well in several critical autonomous driving scenarios such as low-light, night-time, and adverse weather conditions. However, in most cases, the training distribution largely emphasizes the contribution of one specific input that makes the network biased towards one modality. Hence, the generalization of such models becomes a significant problem where the non-dominant input modality during training could be contributing more to the course of inference. Here, we introduce a novel training setup with regularizer in the multimodal architecture to resolve the problem of this disparity between the modalities. Specifically, our regularizer term helps to make the feature fusion method more robust by considering both the feature extractors equivalently important during the training to extract the multimodal distribution which is referred to as removing the imbalance problem. Furthermore, our decoupling concept of output stream helps the detection task by sharing the spatial sensitive information mutually. Extensive experiments of the proposed method on KAIST and UTokyo datasets shows improvement of the respective state-of-the-art performance.Comment: 5 pages, 3 figure, 4 table
    corecore